Mot3, a Zn finger transcription factor that modulates gene expression and attenuates mating pheromone signaling in Saccharomyces cerevisiae.

نویسندگان

  • A V Grishin
  • M Rothenberg
  • M A Downs
  • K J Blumer
چکیده

In the yeast Saccharomyces cerevisiae, mating pheromone response is initiated by activation of a G protein- and mitogen-activated protein (MAP) kinase-dependent signaling pathway and attenuated by several mechanisms that promote adaptation or desensitization. To identify genes whose products negatively regulate pheromone signaling, we screened for mutations that suppress the hyperadaptive phenotype of wild-type cells overexpressing signaling-defective G protein beta subunits. This identified recessive mutations in MOT3, which encodes a nuclear protein with two Cys2-His2 Zn fingers. MOT3 was found to be a dosage-dependent inhibitor of pheromone response and pheromone-induced gene expression and to require an intact signaling pathway to exert its effects. Several results suggested that Mot3 attenuates expression of pheromone-responsive genes by mechanisms distinct from those used by the negative transcriptional regulators Cdc36, Cdc39, and Mot2. First, a Mot3-lexA fusion functions as a transcriptional activator. Second, Mot3 is a dose-dependent activator of several genes unrelated to pheromone response, including CYC1, SUC2, and LEU2. Third, insertion of consensus Mot3 binding sites (C/A/T)AGG(T/C)A activates a promoter in a MOT3-dependent manner. These findings, and the fact that consensus binding sites are found in the 5' flanking regions of many yeast genes, suggest that Mot3 is a globally acting transcriptional regulator. We hypothesize that Mot3 regulates expression of factors that attenuate signaling by the pheromone response pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CLONING AND EXPRESSION OF HUMAN IFNα2B GENE IN SACCHAROMYCES CEREVISIAE

Interferon is a protein secreted by eucaryotic cells following stimulation by viruses, bacteria, and many other immunogenes. Recent medical studies indicate that interferons have effective role in the treatment of virus infections, immunodeficiency and certain types of cancer such as hairy cell leukaemia (HCL). The aim of the present study is to apply yeast strain for secreting human IFNα2b fol...

متن کامل

Identification and analysis of Mot3, a zinc finger protein that binds to the retrotransposon Ty long terminal repeat (delta) in Saccharomyces cerevisiae.

Spt3 and Mot1 are two transcription factors of Saccharomyces cerevisiae that are thought to act in a related fashion to control the function of TATA-binding protein (TBP). Current models suggest that while Spt3 and Mot1 do not directly interact, they do function in a related fashion to stabilize the TBP-TATA interaction at particular promoters. Consistent with this model, certain combinations o...

متن کامل

MAP Kinases with Distinct Inhibitory Functions Impart Signaling Specificity during Yeast Differentiation

Filamentous invasive growth of S. cerevisiae requires multiple elements of the mitogen-activated protein kinase (MAPK) signaling cascade that are also components of the mating pheromone response pathway. Here we show that, despite sharing several constituents, the two pathways use different MAP kinases. The Fus3 MAPK regulates mating, whereas the Kss1 MAPK regulates filamentation and invasion. ...

متن کامل

Role of transcription factor Kar4 in regulating downstream events in the Saccharomyces cerevisiae pheromone response pathway.

Yeast Kar4 is a putative transcription factor required for karyogamy (the fusion of haploid nuclei during mating) and possibly other functions. Previously known to be required only for the transcriptional induction of KAR3 and CIK1, microarray experiments identified many genes regulated by Kar4 in both mating and mitosis. Several gene clusters are positively or negatively regulated by mating ph...

متن کامل

Differential regulation of two Ca(2+) influx systems by pheromone signaling in Saccharomyces cerevisiae.

The budding yeast Saccharomyces cerevisiae generates calcium signals during the response to mating pheromones that promote survival of unmated cells. A Ca(2+) channel composed of Cch1p and Mid1p was previously shown to be necessary for the production of these calcium signals. However, we find that the Cch1p-Mid1p high-affinity Ca(2+) influx system (HACS) contributes very little to signaling or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 149 2  شماره 

صفحات  -

تاریخ انتشار 1998